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Radiative corrections in symmetrized classical electrodynamics
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The physics of radiation reaction for a point charge is discussed within the context of classical electrody-
namics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic
charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are
employed to symmetrize Maxwell’s equations and the Lorentz force equation in covariant form. Within this
framework, the symmetrized Dirac-Lorentz equation is derived, including radiation reaction~self-force! for a
particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined,
and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.

PACS number~s!: 03.50.De, 14.80.Hv, 41.60.2m, 12.20.2m
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I. INTRODUCTION

Recently, close attention has been paid to the concep
duality in quantum-field-theories, as summarized by Wit
@1#. In particular, recent work in superstring theory has
sulted in the convergence of four main themes: electrom
netic duality in four dimensions, the symmetries of sup
gravity, dualities in superstring theory, and gauge the
dynamics in four dimensions.

The concept of duality in electrodynamics results from
symmetry between the electric and magnetic component
the field tensor: the source-free equations of the Maxwell
are symmetrical in vacuum under the transformationE→B,
andB→2E; in addition, the symmetry can be maintained
the presence of four-currents, provided that both electric
magnetic monopoles are introduced, thus suggestin
deeper hidden symmetry. Since Dirac’s brilliant insight
charge quantization@2–4#, the role and importance of mag
netic monopoles and duality in electrodynamics have ta
on a much more profound significance. Feynman a
Wheeler first demonstrated the deep connection betw
time-reversal and charge conjugation@5#, while Schwinger
proposed to associate the electric and magnetic charge
single electrically charged monopole, referred to as a d
@6#. Such a particle should exhibit the full symmetries of t
electromagnetic interaction.

Although magnetic monopoles have never been obser
it can be argued that the apparent quantization of elec
charge might represent indirect evidence for the existenc
magnetic charge. The argument, originally put forth by Dir
@2,3# and later simplified by Saha@7#, can be summarized a
follows: if a magnetic field with nonzero divergence is add
to an electric field with the same property, the total field h
nonzero angular momentum, even in the static case. The
angular momentum turns out to be proportional to the pr
uct of the charges of the electric and magnetic sources
volved, and independent of distance. Since angular mom
tum is quantized, and assuming that the amount of magn
charge in the universe is finite, it follows that electric char
must be quantized. Although other explanations have b
PRE 621063-651X/2000/62~6!/8640~11!/$15.00
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proposed for the observed quantization of charge, Dira
argument remains the most elegant. In addition, in 19
Montonen and Olive showed that in a limiting case of ele
troweak interaction theory, a particle of electric chargeq and
magnetic chargeg, acquires a massm5^c&Aq21g2 under
spontaneous symmetry breaking, where^c& is a constant
measuring the gauge symmetry breaking@8#.

Within this theoretical context, there exists a beautiful a
compelling case for studying fully symmetrized versions
classical and quantum electrodynamics~CED and QED!; in
addition, these theories might also provide the correct
proach to demonstrating that CED indeed represents the
sical limit of QED, a problem that is still unresolved. This
because the duality of fully symmetrized QED implies th
if the electric fine-structure constanta5e2/2«0hc
>1/137.036, and its magnetic counterpart 1/a, are ex-
changed, electric and magnetic phenomena will appear t
switched, for a classical observer. This, in turn can be rela
to the notion of running coupling constants, used in gau
theory dynamics, where two important limiting cases mig
shed some light on the exact relation between QED
CED: the case wherea→`, and quantum effects disappea
and the case where the full symmetry between electricity
magnetism is restored, witha51.

Thus, the main thrust of this paper is to present a class
derivation of radiation reaction for electric and magne
monopoles, as well as dyons. The approach used here
cludes a generalization of Dirac’s derivation of classical
diation reaction for a point charge from general principle
including gauge invariance and Lorentz covariance@9#,
where the double four-potential introduced by Cabbibo a
Ferrari @10# is further extended by introducing a comple
electromagnetic tensor unifying the conventional elect
magnetic tensor and its dual. In addition, the electric a
magnetic four currents are unified into a single complex fo
vector, and the connection with electromagnetic duality
now completely explicit: electric and magnetic charges c
be rotated into one another, while preserving the global
variance of the symmetrized form of Maxwell’s equation
One advantage of the complex four-potential formalism o
8640 ©2000 The American Physical Society
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Dirac’s well-known model of magnetic monopoles is the a
sence of stringlike singularities; in addition, within th
framework, one can readily derive a Hamiltonian for dyo
dyon interactions. Finally, our complex notation proves e
tremely compact, allowing for an elegant derivation of t
symmetrized Dirac-Lorentz equation.

This paper is organized as follows: in Sec. II, we deve
the aforementioned complex double four-potential form
ism; the symmetrized form of the Dirac-Lorentz, equatio
which describes the dynamics of a dyon with radiation re
tion, is derived in Sec. III while the conceptual difficultie
associated with this classical model for a point charge
briefly reviewed in Sec. IV, including electromagnetic ma
renormalization, runaways, and acausal effects; finally, c
clusions are drawn in Sec. V, where the implications of el
tromagnetic duality for QED are also outlined. In addition
few technical points and a physical interpretation of t
Schott term in terms of nonlocal four-momentum conser
tion, are presented in the Appendices, as well as a brief
cussion of the Hamiltonian formalism for classical radiati
reaction.

II. SYMMETRIZED ELECTRODYNAMICS

Here, and throughout the remainder of this paper, we
electron units, where length is measured in units of the c
sical electron radiusr 05e2/4p«0m0c2, while time is mea-
sured in units ofr 0 /c, mass is measured in units ofm0 ,
electric charge is measured in units ofe, and magnetic
charge in units of\/e. In these units,«051/4p, m054p,
and for a particle of massm0 , the four momentum is equal t
the four velocity: pm5um5dxm /dt, where xm(t) is the
world line of the particle, andt is its proper time.

We now focus on the problem of a dyon, having bo
electric and magnetic chargesq and g, respectively@6#. If
magnetic sources are allowed, Maxwell’s equations beco
symmetrized as follows:

]nFmn54p j m, ]nF̃mn54pgm, ~1!

where j m and gm correspond to the electric and magne
four-current densities, and whereF̃mn is the dual electromag
netic tensor. Here, the four-gradient operator@11,12# is de-
fined as]m[(2] t ,¹).

Now introducing the electric four-potentialAm5(f,A),
and its magnetic counterpart,Vm5(w,V), the field tensor
and its dual may be written as follows:

Fmn5]mAn2]nAm2«mnab]aVb ~2!

and

F̃mn5«mnab]aAb1]mVn2]nVm, ~3!

where«mnab is the completely antisymmetrical Levi-Civit
tensor@13#. Applying the Lorentz gauge condition to the fou
potentials, we have]mAm50, and]mVm50; and the sym-
metrized version of Maxwell’s equations become

]n]nAm524p j m , ~4!

and
-

-
-

p
-
,
-

re
s
n-
-

-
is-

e
s-

e

]n]nVm524pgm . ~5!

At this point, we note that Eqs.~4! and ~5! are invariant
under the dual transformation

Am8 5Am cosu1Vm sinu, Vm8 5Vm cosu2Am sinu,
~6!

provided that the charges and four currents are also tr
formed:

j m8 5 j m cosu1gm sinu, gm8 5gm cosu2 j m sinu. ~7!

By analogy, with the idea that the Lorentz invariance b
comes manifest in covariant notation, dual invariance can
clearly expressed in complex notation: since the dual tra
formation is essentially a rotation in the complex char
plane, this suggests the notationq̄5q1 ig, which yields the
complex four-current densityj̄ m5 j m1 igm ; similarly, the
complex four potential is defined asĀm5Am1 iVm , from
which the complex electromagnetic field tensor is derived

F̄mn5Fmn1 i F̃ mn5]mĀn2]nĀm1 i«mnab]aĀb. ~8!

Within this context, the dual transform reduces to

F̄mn8 5F̄mne2 iu, j̄ m8 5 j̄ me2 iu. ~9!

This notation also proves extremely compact: the symm
trized form of Maxwell’s equations takes the form

]mF̄mn52]n]nĀm54p j̄ m, ~10!

and it is now obvious that Eqs.~8! and ~10! are dual invari-
ant.

Within this context, the dual-invariant Lorentz force equ
tion takes the form

Fm5~qFmn1gF̃mn!un5Re~ q̄F̄mn* un!. ~11!

Note that whenever a product between any two comp
electromagnetic quantities defined previously is taken, on
the quantities must be complex conjugated so that its m
netic component changes sign. This operation is analogou
raising and lowering an index in covariant notation, wh
contracting tensors, so that the sign of the timelike com
nent is reversed: in both cases, the sign reversal ensure
invariance of the product under the respective transform.
duality and Lorentz transforms are both rotations, in two a
four-dimensional spaces, respectively.

III. SYMMETRIZED DIRAC-LORENTZ EQUATION

To derive the radiation force, two different approach
can be used. First, one can follow Dirac’s treatment@9,14#
and derive the radiation reaction from general principles
cluding gauge invariance and Lorentz covariance; this is
focus of the present section. The second type of deriva
relies on a careful study of the conservation of the four m
mentum of the electromagnetic field@15–18# during the in-
teraction.

In the case of a classical point dyon@6#, which possesses
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8642 PRE 62VAN METER, KERMAN, CHEN, AND HARTEMANN
both an electric chargeq, and a magnetic chargeg, the com-
plex four current is given by

j̄ m~xn!5q̄E
2`

1`

um~xn8!d4~xn2xn8!dt8, ~12!

where the integral over proper time allows the use of
invariant four-dimensional Dirac delta function, as discuss
in Appendix A.

Now assuming, as Dirac did, that a particle acts on its
through the Lorentz force@9#, but using the symmetrized
expression thereof, the self-force is

Fs
m5Re@ q̄~]mĀs

n2]nĀs
m1 i«mnab]aĀb

s !* un#, ~13!

where the complex self-potential satisfies the driven w
equation

]n]nĀm
s 524pq̄E

2`

1`

um~xn8!d4~xn2xn8!dt8. ~14!

Equation~13! can be written as

Fs
m5Re@ q̄~]mĀs

n* 2]nĀs
m* !un2 i q̄«mnab]aĀb

s* un#,
~15!

while the driven wave equation~14! can be solved in terms
of Green functions:

Ām
s ~xl!524pq̄E

2`

1`

um~xl8 !G~xl2xl8 !dt8, ~16!

where G is the Green function formally defined asG(xl

2xl8)[2d4(xl2xl8)/]n]n. Using this Green function solu
tion in Eq. ~15!, it becomes clear that the last term in th
square brackets is pure imaginary:2 i q̄«mnab]aĀb

s* un

} i q̄ q̄* 5 i uq̄u2; thus, the self-force reduces to

Fs
m5Re@ q̄~]mĀs

n* 2]nĀs
m* !un#. ~17!

Lest this manipulation appears as slight of hand, we de
momentarily from our elegant shorthand to elucidate the r
son for the vanishing of the last term in Eq.~15!: in terms of
real quantities, the self-force reads

F0
m5q~]mAs

n2]nAs
m2«mnab]aVp

s!un

1g~«mnab]aAb
s 1]mVs

n2]nVs
m!un , ~18!

where the electric and magnetic self-potentials are driven
the dyon electric and magnetic four currents, with

FAVG
m

s

~xl!524pFqgG E
2`

1`

um~xl8 !G~xl2xl8 !dt8, ~19!

which implies thatVm
s 5(g/q)Am

s . This last relation allows
some cancellation in Eq.~18!, yielding the simpler expres
sion

Fs
m5q~]mAs

n2]nAs
m!un1g~]mVs

n2]nVs
m2 !un , ~20!

in agreement with Eq.~17!.
e
d

lf

e

rt
a-

y

Physically, the disappearance of the cross terms involv
the action of the magnetic self-potential on the elect
charge, and that of the electric self-potential on the magn
charge, is due to the fact that the corresponding pondero
tive self-forces exactly cancel out. This decoupling of t
radiation reaction forces is to be expected because the p
ization of the radiation generated by the dyon’s elect
charge is always orthogonal to that radiated by the magn
charge; thus, there is no interference between the electric
magnetic components of the dyon self-electromagnetic fi

Using the explicit form of the Green function in the forc
equation, we have

Fm
s ~xl!524puq̄u2E

2`

1`

un@un8]m2um8 ]n#G~xl2xl8 !dt8,

~21!

where we have used the notationum8 5um(xl8).
We now apply Dirac’s procedure for finding the self-forc

in the point limit. The Green function in Eq.~21! depends on
the space-time intervals25(x2x8)m(x2x8)m; using s2 as
the independent variable, the four-gradient operator re
]m[2(xm2xm8 )]/]s2, and the self-force is

Fm
s 528puq̄u2E

2`

1`

dt8un@un8~xm2xm8 !2um8 ~xn2xn8!#
]G

]s2 .

~22!

At this point, we introduce the new variablet95t2t8, so
that the range of integration explicitly includes the electr
~singular point att950). To evaluate the integral in Eq
~22!, we can now use Taylor-McLaurin expansions in po
ers oft9: we first have

xm2xm8 5xm~t!2xm~t2t9!

5t9um2
1

2
t92am1

1

6
t93

dam

dt
1¯ , ~23!

where we have used the four-velocity and four-accelerat
For the four velocity, we have

um8 5um~t2t9!5um2t9am1
1

2
t92

dam

dt
1¯ . ~24!

Using expansions~23! and ~24!, and factoring, we have

un

t9
@un8~xm2xm8 !2um8 ~xn2xn8!#

5~unun!S um2
t9

2
am1

t92

6

dam

dt D1
t92

2 S un
dan

dt Dum

2S um2t9am1
t92

2

dam

dt D ~unun!2
t92

6 S un
dan

dt Dum

1O~t93!. ~25!

We now use the Lorentz invariantumum521. Differentiat-
ing this equation with respect to the proper timet, we first
find that um(dum/dt)505umam; this result corresponds to
the fact that the derivative of a vector with fixed length
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orthogonal to the original vector: the four-acceleration is
ways perpendicular to the four velocity. Differentiating
second time with respect tot, we also have amam

52um(dam/dt) @11,14,17#.
Grouping terms, we finally obtain the important result

un@un8~xm2xm8 !2um8 ~xn2xn8!#

5t92H 2
1

2
am1

t9

3 Fdam

dt
2um~anan!G J 1O~t94!.

~26!

The relation between the space-time intervals2 and the
proper time differencet9 can be expanded as well:s2

5t92(umum)2(t93/2)(umam1amum)1O(t94); using the
orthogonality of the four velocity and four acceleration, th
reduces to s252t921O(t94), and we have ]G/]s2

5@21/2t91O(t9)#]G/]t9.
With this, the expression for the self-force reads

Fm
s 54puq̄u2E

2`

1`

dt9H 2~t9/2!am1
t92

3 Fdam

dt
2um~anan!G

1O~t93!J ]G

]t9
. ~27!

We can integrate Eq.~27! by parts, according to
*dt9 f (t9)]G/]t952*dt9(] f /]t9)G(t9), and obtain

Fm
s 524puq̄u2E

2`

1`

dt9H 2
1

2
am1

2

3
t9Fdam

dt
2um~anan!G

1O~t92!J G~t9!. ~28!

We now use the retarded~causal! Green function@9,14#;
Eq. ~28! reads

Fm
s 5uq̄u2E

2`

1`

dt9H 2
1

2
am1

2

3
t9Fdam

dt
2um~anan!G

1O~t92!J d~t9!

ut9u S 11
t9

ut9u D , ~29!

where we have usedx02x08/ux02x08u5t9/ut9u, and d(s2)
5d(2t92)5d(t9)/ut9u. This last identity has to be define
mathematically with care, as discussed in Appendix B.

We now proceed with the integration of Eq.~29! to obtain

Fm
s 52

1

2
uq̄u2F E

2`

1` d~t9!

ut9u
dt9Gam

1
2

3
uq̄u2Fdam

dt
2um~anan!G , ~30!

which is the sought-after expression for the self-force. N
that we have dropped the antisymmetrical terms
t9/ut9ud(t9) and (1/t9)d(t9), and that this expression i
exact because all the higher-order terms in the expan
-

e
n

on

integrate out; this fact is rarely appreciated in the literatu
The momentum-transfer equation, including the radiation
action, now reads

Fm1
1

2
uq̄u2E

2`

1` d~t9!

ut9u
dt9Gam

5Re~ q̄F̄mn* un!1
2

3
uq̄u2Fdam

dt
2um~anan!G .

~31!

Equation ~31! clearly exhibits the infinite electromagnet
mass, in the form of the divergent integral multiplying th
four acceleration.

IV. CONCEPTUAL DIFFICULTIES: ELECTROMAGNETIC
MASS RENORMALIZATION, RUNAWAYS,

ACAUSAL EFFECTS

In this section, the main conceptual problems associa
with the classical Dirac-Lorentz electron model are review
and discussed. The Dirac-Rohrlich asymptotic condit
@9,16# is then introduced to determine the physical solutio
of the Dirac-Lorentz equation.

As shown in Eq.~31!, the mass term contains an infinit
contribution from the self-electromagnetic fields of the po
dyon. There are two different ways to circumvent this dif
culty. First, we can consider that the infinite potential ene
associated with a point-charge model must be balanced b
infinite binding energy2W, such as that produced by th
Poincare´ stress tensor@16,19,20#, so that the finite observed
rest mass of the dyon is given in units ofm0 by m
5(1/2)uq̄u2*d(t9)/ut9udt92W. This procedure is essen
tially equivalent to mass renormalization in QED. The dive
gent electromagnetic mass, which is produced by the sin
lar part of the Green function, can also be remov
by considering the time-symmetrical Green functionG
5(1/2)(G22G1), as first proposed by Dirac@9#; hereG6

represent the retarded and advanced Green functions. T
is little doubt that the removal of the infinite self-energy
the ~nonradiative! Coulomb field is deeply connected to th
charge conjugation and time-reversal properties of electro
namics, as exemplified by the Wheeler-Feynman electro
namics@21,22#; however, the connection is not entirely clea

Using either approach to renormalize the electromagn
mass, we finally obtain the complete equation of motion
a particle with arbitrary electric and magnetic charge:

mam5Re~ q̄F̄mn* un!1
2

3
uq̄u2Fdam

dt
2um~anan!G , ~32!

wherem is the renormalized dyon mass. It is manifest th
Eq. ~32!, like the generalized form of Maxwell’s equation
is invariant under a duality transform. In the case of an el
tron, q̄521, which yields the well-known Dirac-Lorentz
equation:

am52Fmnun1t0Fdam

dt
2um~anan!G , ~33!
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wheret052/3 is the Compton time scale, expressed in
units of r 0 /c used here. In mksa units,t05m0e2/6pm0c
50.626310223s. The first term on the right-hand side is th
Lorentz force, while the radiation reaction contain the Sch
term @9–12,14–20,23# and the radiation damping forc
@11,17–19,24#.

A very important property of the Dirac-Lorentz equatio
is the fact that it satisfies energy-momentum conservation
is easily seen by contracting Eq.~33! with the four velocity;
we then have

umam505umFmnun1
2

3 Fum
dam

dt
2~umum!~anan!G ,

~34!

which is satisfied by virtue of the antisymmetry of the ele
tromagnetic field tensorFmv and the orthogonality ofum and
am .

We now briefly review some of the conceptual difficulti
associated with the Dirac-Lorentz equation itself. First, it
easily seen that, in the absence of an external field, Eq.~33!
can be contracted witham to obtain amam5(t0/2)(d/
dt)(amam), which admits the so-called ‘‘runaway’’ solutio
@amam#(t)5@amam#t50 exp(2t/t0).

Note that this self-excited motion implies th
@amam#t50Þ0, and can be eliminated through the use of
appropriate asymptotic conditions, limt→6` am(t)50, as
suggested by Dirac@9# and Rohrlich @16#. This type of
boundary condition on the electron motion also satisfies
law of inertia: the electron velocity remains constant wh
no external force is applied. A detailed analysis of Eq.~33!
@16,20# also reveals the existence of acausal, or ‘‘preacc
eration’’ solutions. This is directly connected to the implic
electromagnetic mass renormalization underlying the Dir
Lorentz equation: the self-force can be explicitly derived
using the time-symmetrical Green functionG5(1/2)(G2

2G1) @14#, as first noted by Dirac@9#. As a result, although
the electron is modeled as a point charge, it can inte
electromagnetically with external fields localized within
classical radius: to show the implicit acausality of the Dira
Rohrlich solution, we recast the Dirac-Lorentz equation
the form @16,20#

am2t0

dam

dt
5Km Km52Fmnun2t0um~anan!. ~35!

Multiplication by the integrating factore2t/t0 yields

d

dt
@am~t!e2t/t0#52

1

t0
e2t/t0Km~t!; ~36!

Equation~36! can now be formally integrated to obtain

am~t!5expS t

t0
D E

2`

t

expS 2
t8

t0
D

3F 1

t0
unFmn1um~anan!G~t8!dt8. ~37!

The structure of this formal solution, which implicitly sa
isfies the Dirac-Rohrlich asymptotic condition, clear
exhibits the acausal convolution integral opera
e

tt

as

-

e

e
n

l-

-

ct

-

r

*t
2`dt8 exp(2t8/t0), which ‘‘weights’’ the externally ap-

plied electromagnetic field exponentially within a charact
istic space-time interval equal to the classical electron rad
This type of solution does not run away because the pre
celeration of the electron over the Compton time sc
‘‘launches’’ it on a stable trajectory. In other words, the pr
acceleration exactly compensates the runaway instabi
and when the external field is applied, the electron execut
motion that conserves the total four momentum, includ
the pump and scattered fields, and asymptotically satis
the law of inertia.

V. DISCUSSION

At this point, the connection between duality and the fu
symmetrized version of electrodynamics can be discus
within the context of a dynamical gauge theory, where
fine structure constant is now a running coupling consta
We start from the Dirac-Schwinger charge quantization c
dition @6# for electric and magnetic monopoles:

q13q25Im~ ā1q̄2* !ẑ5na21ẑ, nPN. ~38!

In Eq. ~38! thez axis corresponds to angular momentum; th
is schematically illustrated on Fig. 1~top! where two differ-
ent charge state vectors are shown in the complex ch
plane for a positron, withq15@ x̂Re(q̄1)1ŷIm(q̄1)#5x̂, along
the electric axis, and a magnetic monopole,q25@ x̂Re(q̄2)
1ŷIm(q̄2)#5a21ŷ, along the magnetic axis. Thep/2 angle
between both charge states corresponds to the orthogon
of the electric and magnetic axes. The total angular mom
tum of the system is now represented by the cross produc
q1 andq2 , and is quantized according to Eq.~38!. It is clear
that a duality transform simply rotates the electric and m
netic axes, as shown in Fig. 1~top!; however, the cross prod
uct remains unchanged, as the relative angle between

FIG. 1. Illustration of the Dirac-Schwinger quantization cond
tion and the duality transform.
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monopole charge states and their length are preserved by
rotation. Therefore, to fully symmetrize electrodynamic
one needs to takea51, as first observed by Dirac@2,3#, in
which case the distinction between electric and magn
charges disappears. In this case, the radiation reaction
equal for an electric or a magnetic point charge interact
with external fields, and the full symmetry of electrodyna
ics is realized, as illustrated in Fig. 1~bottom!. One of the
deepest questions associated with this theory is the e
connection with spin and the Dirac equation of QED@25#.

In conclusion, the basic electrodynamic equations fo
dyon have been presented within the context of a covar
formalism in the complex charge plane. A double-poten
formalism has been introduced, which facilitates symme
zation of the calculations. An expression for the general s
force of a dyon has been derived, and it has been found
this expression is proportional to Dirac’s expression for
self-force on an electron, differing only by a factor involvin
the electric and magnetic charge. Dirac’s procedure for t
ing the point limit of the self-force has been applied, and
complete electrodynamic equation of motion for a dyon h
been obtained. Finally, the connection with electromagn
duality has been outlined.
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APPENDIX A: DYON FOUR-CURRENT

In Sec. II, the dyon four current is modeled by the integ
over the dyon proper time of a four-dimensional delta fun
tion; here, we show how to go from a three-dimensio
point charge model to an invariant delta function. In gene
the four-current density can be expressed in terms of fo
velocity and charge density as

j m~xl!5Fum

g G~xl!r~xl!, ~A1!

which can be formally expressed as an integral over all tim
if we use the properties of the Diracd distribution:

j m~xl!5E
2`

1`

um~xl8 !r~xl8 !d~ t2t8!
dt8

g8
. ~A2!

Here, xl85xl(t8)[@ t8,x(t8)#, and is measured in units o
r 0 . The charge density of the dyon is now modeled by
three-dimensionald distribution, and we have

j m
s ~xl!5q̄E

2`

1`

um~xl8 !d3~x2x8!d~ t2t8!dt8, ~A3!

where we have introduced the dyon proper time, defined
dt85g8dt8. The invariant four-dimensionald distribution
can now be introduced, to yield
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j m
s ~xl!5q̄E

2`

1`

um~xl8 !d4~xl2xl8 !dt8. ~A4!

APPENDIX B

In Sec. III, we have used the identity:

d~s2!5d~2t92!5
d~t9!

ut9u
. ~B1!

The identity given by Eq.~B1! has to be defined mathemat
cally with care. We need to show that, for a certain class
suitably defined functions, we have

E f ~x!d~x2!dx5E f ~x!
d~x!

uxu
dx. ~B2!

Starting from the well-known identity@14,19,26,27#

d~x22a2![
d~x2a!1d~x1a!

2uau
, ~B3!

and definingg(x)5 f (x)/uxu, we first have

E f ~x!d~x22a2!dx5E uxug~x!d~x22a2!dx

5
uau@g~a!1g~2a!#

2uau

5
g~a!1g~2a!

2
. ~B4!

Applying this result to a function f (x) such that
lim

x→0
@ f (x)/uxu#5g(0) exists, we can now write

lim
a→0

F E f ~x!d~x22a2!dxG5 lim
a→0

Fg~a!1g~2a!

2 G
5g~0!

[E f ~x!d~x2!dx, ~B5!

which is identical to

E f ~x!
d~x!

uxu
dx5E g~x!d~x!dx5g~0!. ~B6!

In this sense, the identity~B1! is properly defined.

APPENDIX C: SCHOTT TERM

Here, we consider the exchange of four-momentum
tween the electron, the external field, and the scattered fi
An elementary treatment of this problem can be given in
instantaneous rest frame of the particle, as discussed by J
son @19#, where one can balance to zero the time-avera
work produced by the radiation force on the particle with t
time-averaged radiated electromagnetic energy@19#, to ob-
tain the Schott term of the Abraham-Lorentz force@9,28–
34#. The Schott term depends on the second time deriva
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8646 PRE 62VAN METER, KERMAN, CHEN, AND HARTEMANN
of the particle velocity. However, it should be noted he
that, strictly speaking, in the instantaneous rest frameb
50) where, by definition, both the particle velocity and k
netic energy are equal to zero, the infinitesimal variation
the work of the damping force,dW5Fbdt, must also be
zero. In fact, it will be shown that in that frame, the dipo
radiation pattern of the scattered field is symmetrical, a
that there is no momentum exchanged between the ch
and the radiated wave@17,18#. The method of derivation
used here consists of evaluating the instantaneous varia
of the energy momentum of the radiated field fi
@11,17,18#. This can be done either by integrating the Poy
ting vector flux and the radiation pressure of the scatte
field on a sphere of finite radius, then taking the limit whe
the radius tends to zero, assuming no internal particle st
ture @18#, or by generalizing results obtained in the instan
neous rest frame in a covariant way@11,20#.

For a point charge moving along a world linexm(t) with
three-velocityb5dx/dt and three-accelerationḃ5db/dt,
the radiative electric field atr m is obtained by deriving the
Liénard-Wiechert four potential. In electron units, we ha
for the radiative field@11,12,15–17,19,24,35–39#

E~r m!52Fn3~n2b!3ḃ

~12bn!3R
G , ~C1!

where the quantities in the bracket are evaluated at the
tarded time t2 such that t2t25R(t2)5ur2x(t2)u, and
wheren is the unit vector in the direction of observation.

The instantaneous electromagnetic momentum flux
given in terms of the Maxwell stress tensor@11,12,15–
17,19,24,35–39#, defined as

Ti j 5
1

4p FEiEj1BiBj2
1

2
~E21B2!d i j G . ~C2!

The total radiation pressure force applied to a sphere
radiusR, corresponding to the momentum recoil of the ph
tons emitted by the particle att2 is given by**Ti j njR

2dV,
wherenj is the j th component ofn. Following Ref.@18#, the
instantaneous variation of the momentum of the scatte
field can be expressed as

dG

dt
52 lim

R→0
F E E ~n+T!R2dV G , ~C3!

where+ denotes tensorial contraction.
The details of the derivation are given in Appendix D; t

covariant form of the instantaneous variation of the scatte
wave four momentum is found to be

dGm

dt
5

2

3
~anan!um ~C4!

The corresponding radiation damping force acting on
charge is essentially a relativistic effect. Indeed, if we fi
consider the instantaneous rest frame of the particle, we
that this force vanishes, as indicated by Eq.~C4!. This is due
to the symmetry of the dipole radiation pattern in this p
ticular frame, as shown in Fig. 2~top!: although electromag
netic energy is radiated by the particle, there is no net re
f

d
ge
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t
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d
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e-
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d

d

e
t
ee

-

il

force because for each photon radiated in a given directio
space there is a photon with the same momentum radiate
the opposite direction. In any other frame, as shown in Fig
~bottom!, the relativistic Doppler effect breaks this symm
try: the photons radiated in the forward direction are blu
shifted and carry more momentum than their backscatte
counterparts, resulting in a net radiation force opposite to
direction of motion. In the instantaneous rest frame, the e
tron merely mediates the transfer of energy from the exte
field to the radiated wave by scattering the incident photo
This physical picture is in agreement with the fact that in th
frame the electron has no free energy to yield, and that
work of any force acting on the electron must be zero; it a
clearly indicates that in that frame, energy is directly e
changed between the external field and the scattered w
With this in mind, we now need to carefully investigate th
conservation of the energy momentum of the three inter
ing bodies. The covariant energy-momentum transfer eq
tion between the charge and the electromagnetic field n
takes the form am5dpm /dt52Fmnun2dGm /dt
2dHm /dt, where the first term is the usual Lorentz forc
expressed in terms of the electromagnetic tensor, while
second term corresponds to the four-momentum radia
away by the scattered wave as derived above, and wher
have introduced a third term corresponding to the instan

FIG. 2. Top: dipole radiation pattern, as observed in the inst
taneous rest frame of the accelerated electron. Bottom: the s
pattern, as observed in a frame whereg51.01.
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neous variation of the energy momentum of the external fi
resulting from the interaction. Within this context, the rad
tion force is defined as Fm

s

52d/dt(Gm1Hm); here, we have also used the princip
of action and reaction, which holds as long as we cons
the instantaneous interaction of a point particle: in that ca
both the spacelike and timelike intervals are zero and the
no propagation delay to consider.

We now use the relations between the four-velocity a
its successive derivatives@11,14,17#; using Eq. ~C4!, and
contracting the four-momentum transfer equation with
four velocity, we first have

umam5052umFmnum1
2

3 S un

dan

dt D ~umum!2um
dHm

dt
.

~C5!

The first term on the right-hand side is equal to zero, si
the electromagnetic tensor is antisymmetrical; in the sec
term, we use umum521 to obtain 2/3undan/dt
52umdHm /dt. As noted by Pauli@11#, the general solution
is dHm /dt52(2/3)dam /dtum1kunKmn , where we have
introduced the antisymmetrical tensor Kmn

52/3@um(dan /dt)2un(dam /dt)#, and wherek is an arbi-
trary constant.

It is clear thatk50 yields the Dirac-Lorentz equation; i
that case, we can identify the variation of the four mome
tum in the external field with the Schott term:dHm /dt
522/3(dam /dt). With this, the manifestly covariant ex
pression for the radiation reaction becomes

Fm5
2

3 Fdam

dt
2um~anan!G , ~C6!

and it is easily seen thatFm5unKmn . In addition, the anti-
symmetrical character of the tensorKmn guarantees tha
umFm50. For completeness, we give the corresponding
pression of the radiation reaction force in vector form,
expressed in electron units where the force is normalize
m0c2/r 0 :

F5t0g2$b̈13g2ḃ~b•ḃ !1g2b@b•b̈13g2~b•ḃ !2#%.
~C7!

It is easily verified that the variation of the electron ener
due to the radiative effects~timelike component of the radia
tion force! satisfies the equation

FIG. 3. Scattering of a laser pulse by an electron initially at re
ld
-

er
e,
is

d

e

e
d

-

-
s
to

dg

dt
5t0gA@b•b̈13g2~b•ḃ !2#5b•F. ~C8!

Equation~C6! corresponds exactly to the covariant expre
sion of the Abraham-Lorentz force. The self-interaction n
ture of the radiation force is evident, as the expression
rived scales with the square of the particle charge:t0
5m0e2/6pm0c. In the first term of Eq.~C6!, we recover the
Schott term that depends on the second time derivative of
particle velocity, and which is identified here with the dep
tion of energy momentum from the pump~accelerating!
field, while we recover the quadratic scaling with accele
tion for the second term corresponding to the radiat
damping force. As indicated by Eq.~C6!, the total radiation
force can be attributed to two distinct effects. On the o
hand, energy momentum is radiated away by the scatte
wave, as described by Eq.~C4!. The asymmetry of the
Doppler-shifted dipole radiation pattern in any frame whe
the particle is not instantaneously at rest, gives rise to
force, which dominates in the ultrarelativistic limit; it als
has a nonzero value for a particle submitted to a cons
acceleration, as opposed to the Schott term. On the o
hand, the second term in Eq.~C6! is attributed to the energy
momentum exchanged between the scattered wave and
external field. This term allows for the local simultaneo
conservation of energy and momentum during the radia
process. The physics of the interaction can be illustrated
considering the process shown in Fig. 3. Here, we cons
the total energy and momentum of the electrodynamical s
tem initially comprising a high intensity, short-waveleng
incoming laser pulse~pump! and an electron at rest. In gen
eral, after the interaction, the electron has gained some
ergy and momentum~in the minimal case, the electro
would be left precisely at rest after the scattering!, and is
now moving at relativistic velocity, while the scattered wa
carries energy and momentum in all spatial directions. In t
case, it is clear that all the energy and momentum gained
both the electron and the scattered wave come at the exp
of the external field. It is equally clear that in such a proce
the radiated electromagnetic power and the variation of
electron energy cannot be equal, therefore invalidating
theoretical model based on the local conservation of f
momentum between the electron and the radiated field o
We also note that while the backscattered radiation does
interfere with the laser pulse, the forward scattered radiat
which has the same spectral characteristics as the pump
co-propagates in the positivez direction, does interfere de
structively with the laser pulse and lowers its energy a
momentum, yielding pump-field depletion.

Finally, in the case of an external electric field deriv
from a static potentialw(r ), the timelike component of the
Dirac-Lorentz equation, which describes energy conser
tion, takes the simple form

dg

dt
5u•¹w1

2

3

d2g

dt22
dG0

dt
5

d

dt Fw1
2

3

dg

dt
2G0G ,

~C9!

and can formally be integrated to yield the conservation l
D(g2w1G0)52/3@dg/dt#2`

1` , which indicates that,
provided the Dirac-Rohrlich asymptotic conditio
limt→6`@dg/dt#50 is satisfied, the electron potential e
ergy is converted to kinetic energy and radiation.

.
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Within this context, the small value of the fine-structu
constant, which corresponds to the ratio of the classica
quantum electron scale~classical electron radius divided b
the electron Compton wavelength!, guarantees that th
acausal effects related to the electromagnetic mass renor
ization will be smeared by quantum fluctuations before
strong classical radiative correction regime is reached, t
preventing ‘‘naked acausalities.’’ If magnetic charges a
considered, however, the radiation reaction dominate o
the quantum effects because the effective coupling cons
is now a21, which is a large number.

APPENDIX D: MAXWELL STRESS TENSOR

The instantaneous variation of the momentum of the s
tered field can be expressed in terms of the electromagn
x-
re
ns

-

r

to

al-
e
us
e
er
nt

t-
tic

stress tensor as

dG

dt
52 lim

R→0
F E E ~n+T!R2dV G , ~D1!

where+ denotes tensorial contraction.
Introducing the vectorj, defined such that

E5
ḃj

~12n•b!3R
, ~D2!

and using the fact thatB5n3E, Eq. ~D1! reduces to
dGi

dt
5

1

4p E E njF ḃ2$d i j j
22j ij j2~njjk2nkj j !~nkj i2nijk!%

~12b•n!5 G
t5t2

dV. ~D3!
-

ius
ous

red
the
he

-

Following Sommerfeld@15#, we change variables, and e
press the variation of momentum as a function of the
tarded time. After some straightforward vector calculatio
we obtain

dG

dt2 52
1

4p
ḃ2E E @j3~j3n!#

~12b•n!5 dV, ~D4!

which can be further reduced to

dG

dt2 5
1

4p E E n
$n3@~n2b!3ḃ#%2

~12b•n!5 dV, ~D5!

by noting thatj3(j3n)5(n•j)j2j2n, and n•j50. It is
interesting to notice that Eq.~D5! can also be derived di
rectly by using the Poynting vectorS5E3H in the simpler
equation limR→0(**SR2dV), as shown in Ref.@18#. To
evaluate the integral in Eq.~D5!, we expand the numerato
using spherical coordinates

$n3@~n2b!3ḃ#%2

5ḃ2@~sina sinu cosf1cosa cosu!2~b221!

1~12b cosu!212b cosa~12b cosu!

3~sina sinu cosf1cosa cosu!#. ~D6!

Here, we have chosen the axis of the Galilean frameL such
that we have

b5 ẑb,

ḃ5ḃ~ ẑ cosa1 x̂ sina!,

and

n5 x̂~sinu cosf!1 ŷ~sinf sinf!1 ẑ cosu.
-
,

The integral over all solid angles is

dG

dt2 5
1

4p E
0

2p

dfE
0

p

n
$n3@~n2b!3ḃ#%2

~12b•n!5 sinudu, ~D7!

where the explicit dependence of the numerator onu andf is
given by Eq.~D6!. The integral corresponding to they com-
ponent averages to zero overf, and the integral correspond
ing to thex component averages to zero overu. We are left
with

dG

dt2 5 ẑ
1

4p
ḃ2F8

3
pbg6~12b21b2 cos2 a!G . ~D8!

At this point it is important to note that, as the sphere rad
tends to zero, the retarded time tends to the instantane
interaction time; Eq.~D8! is easily shown to reduce to

dG

dt
5

2

3
bg4@ḃ21g2~b•ḃ !2#. ~D9!

The instantaneous variation of the energy of the scatte
wave can be derived in the same way by integrating
Poynting vector flux over all solid angles, and taking t
limit where R tends to zero, to recover the Lie´nard formula

dW

dt
5

2

3
g4@ḃ21g2~b•ḃ !2#. ~D10!

The velocity-dependent term in Eqs.~D9! and ~D10! can be
expressed in terms of the four acceleration as

g4@ḃ21g2~b•ḃ !2#5amam. ~D11!

The covariant generalization of Eqs.~D9! and ~D10! then
becomes quite straightforward. Following Becker@17#, we
combine Eqs.~D9! and ~D10! to obtain the sought-after co
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variant form of the instantaneous variation of the energy m
mentum of the scattered wave:

dGm

dt
5

dGm

dt

dt

dt
5g

dGm

dt
5

2

3
~anan!um . ~D12!

APPENDIX E: HAMILTONIAN FORMALISM

It is also quite instructive to consider the dynamics o
point electron within the context of a Hamiltonian forma
ism. It can be shown that, in the temporal gauge, the Ham
tonian

H52A~p2A!21m21
1

16p E E E ~E21B2!d3x,

~E1!

yields the covariant Dirac-Lorentz equation in an exter
field Fmv provided that the mass term in Eq.~A32! satisfies
the condition

m5
1

2 E d~t!

utu
dt21, ~E2!

which corresponds to the mass renormalization previou
introduced. In Eq.~E1!, p is the particle canonical momen
tum, andA(q) is the vector potential at the position of th
particle. Note that in Eq.~E1!, there is a negative sign in
front of the term usually associated with the kinetic ener
This readily explains the existence of runaway solutions. I
equally important to notice that the normalized electron m
in the Dirac-Lorentz equation has the usual value of one,
not the value ofm given in the Hamiltonian@Eq. ~E1!#. In
this sense, it is clear that the~dissipative! Dirac-Lorentz
equation cannot be derived from a conventional Hamilton
~as expected!.

One should also recognize that, by neglecting the ra
tion reaction terms in the Dirac-Lorentz equation, which th
reduces to the usual Lorentz force equation, one can rec
the standard Hamiltonian in an external potential,

H5A~p2A!2111w, ~E3!

which defines a positive particle kinetic energy, as exem
fied by the plus sign in front of the square root.

Furthermore, in the case where the external force is
rived from a potential, it is possible to integrate the timeli
component of the Dirac-Lorentz equation to obtain

Dg5Dw2W1
2

3 Fdg

dt G
2`

1`

, ~E4!
s-
-

il-

l

ly
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d

n

a-
n
er

i-
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where the usual balance between the kinetic, potential,
radiated energy is realized, as long as limt→`@dg/dt#
5 limt→`@dg/dt#, which the Dirac-Rohrlich asymptotic
condition obviously satisfies. Because of the implied non
cality of the radiation, this balance is generally not realiz
differentially.

Finally, it is worth noting that the runaway solutions o
the Dirac-Lorentz equation correspond to~unphysical! trajec-
tories that minimize the particle energy associated with
Hamiltonian given in Eq.~E1! by making it tend to negative
infinity. In this sense, there is an interesting analogy betw
the Dirac-Rohrlich asymptotic conditions~law of inertia!,
which are assumed by Dirac to yield the only physical so
tion to the Dirac-Lorentz equation@9#, and the assumption
made in QED that the negative-energy states are enti
occupied by electrons in order to prevent transitions fr
positive to negative energies. The general problem of
classical limit of QED remains an outstanding difficulty
classical electrodynamics at high-field strengths. For
ample, using the path-integral formulation of QED, the ph
ton coordinates can be functionally integrated out@40#, but
the radiation reaction terms yield divergences on the elec
world line that are exactly analogous to those discusse
Sec. II. However, the Dirac-Lorentz equation, coupled to
prescription that all runaway solutions must be excluded,
fers a simple and economical classical electron model
yields a consistent electrodynamics that includes the u
Maxwell-Lorentz theory and gives a reasonable descript
of such phenomena as nonlinear Compton scattering, w
can now be studied experimentally at energies in the 50 G
range and laser intensities exceeding 1018W/cm2 @41,42#. Fi-
nally, we note that the Hamiltonian formalism can also
generalized within the framework of symmetrized electrod
namics: the symmetrized Hamiltonian including radiation
action is simply given by

H52A~p2eA2gV!21m21ef1gw

1
1

8p E E E S E21B2

2
2V•“3E1A•“

3B2w“•E2f“•BDd3x, ~E5!

while the Lorentz force Hamiltonian is H
5A(p2eA2gV)21m21ef1gw. Of course, there is no
Hamiltonian for the Dirac-Lorentz equations following E
~E5!.
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