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The physics of radiation reaction for a point charge is discussed within the context of classical electrody-
namics. The fundamental equations of classical electrodynamics are first symmetrized to include magnetic
charges: a double four-potential formalism is introduced, in terms of which the field tensor and its dual are
employed to symmetrize Maxwell’s equations and the Lorentz force equation in covariant form. Within this
framework, the symmetrized Dirac-Lorentz equation is derived, including radiation re#sélh+force for a
particle possessing both electric and magnetic charge. The connection with electromagnetic duality is outlined,
and an in-depth discussion of nonlocal four-momentum conservation for the wave-particle system is given.

PACS numbgs): 03.50.De, 14.80.Hv, 41.66m, 12.20-—m

[. INTRODUCTION proposed for the observed quantization of charge, Dirac’s
argument remains the most elegant. In addition, in 1977,
Recently, close attention has been paid to the concept dflontonen and Olive showed that in a limiting case of elec-
duality in quantum-field-theories, as summarized by Wittentroweak interaction theory, a particle of electric chaggend
[1]. In particular, recent work in superstring theory has re-magnetic charge, acquires a masm=(¢>\/q2+ g® under
sulted in the convergence of four main themes: electromagspontaneous symmetry breaking, whéi® is a constant
netic duality in four dimensions, the symmetries of super-measuring the gauge symmetry breakjgg
gravity, dualities in superstring theory, and gauge theory Within this theoretical context, there exists a beautiful and
dynamics in four dimensions. compelling case for studying fully symmetrized versions of
The concept of duality in electrodynamics results from theclassical and quantum electrodynam{&ED and QED); in
symmetry between the electric and magnetic components @fddition, these theories might also provide the correct ap-
the field tensor: the source-free equations of the Maxwell sgproach to demonstrating that CED indeed represents the clas-
are symmetrical in vacuum under the transformaficn B, sical limit of QED, a problem that is still unresolved. This is
andB— —E; in addition, the symmetry can be maintained in because the duality of fully symmetrized QED implies that
the presence of four-currents, provided that both electric and the electric  fine-structure constanta=e?/2sghc
magnetic monopoles are introduced, thus suggesting =1/137.036, and its magnetic counterparg,l/are ex-
deeper hidden symmetry. Since Dirac’s brilliant insight onchanged, electric and magnetic phenomena will appear to be
charge quantizatioi2—4], the role and importance of mag- switched, for a classical observer. This, in turn can be related
netic monopoles and duality in electrodynamics have taketo the notion of running coupling constants, used in gauge
on a much more profound significance. Feynman andheory dynamics, where two important limiting cases might
Wheeler first demonstrated the deep connection betweeshed some light on the exact relation between QED and
time-reversal and charge conjugatifBl, while Schwinger CED: the case whera—«, and quantum effects disappear,
proposed to associate the electric and magnetic charge inaad the case where the full symmetry between electricity and
single electrically charged monopole, referred to as a dyomagnetism is restored, with=1.
[6]. Such a particle should exhibit the full symmetries of the Thus, the main thrust of this paper is to present a classical
electromagnetic interaction. derivation of radiation reaction for electric and magnetic
Although magnetic monopoles have never been observednonopoles, as well as dyons. The approach used here in-
it can be argued that the apparent quantization of electricludes a generalization of Dirac’s derivation of classical ra-
charge might represent indirect evidence for the existence dafiation reaction for a point charge from general principles,
magnetic charge. The argument, originally put forth by Diracincluding gauge invariance and Lorentz covariari€s,
[2,3] and later simplified by Sah&], can be summarized as where the double four-potential introduced by Cabbibo and
follows: if a magnetic field with nonzero divergence is addedFerrari [10] is further extended by introducing a complex
to an electric field with the same property, the total field haslectromagnetic tensor unifying the conventional electro-
nonzero angular momentum, even in the static case. The fieltlagnetic tensor and its dual. In addition, the electric and
angular momentum turns out to be proportional to the prodmagnetic four currents are unified into a single complex four
uct of the charges of the electric and magnetic sources invector, and the connection with electromagnetic duality is
volved, and independent of distance. Since angular momemow completely explicit: electric and magnetic charges can
tum is quantized, and assuming that the amount of magnetioe rotated into one another, while preserving the global in-
charge in the universe is finite, it follows that electric chargevariance of the symmetrized form of Maxwell's equations.
must be quantized. Although other explanations have bee®ne advantage of the complex four-potential formalism over
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Dirac’s well-known model of magnetic monopoles is the ab- 9,0V, = —4mg, . (5)
sence of stringlike singularities; in addition, within this
framework, one can readily derive a Hamiltonian for dyon- At this point, we note that Eqg4) and (5) are invariant
dyon interactions. Finally, our complex notation proves ex-under the dual transformation
tremely compact, allowing for an elegant derivation of the
symmetrized Dirac-Lorentz equation. A=A, cosf+V,sing, V=V, cosfd—A, sing,

This paper is organized as follows: in Sec. Il, we develop (6)
the aforementioned complex double four-potential formal- )
ism: the symmetrized form of the Dirac-Lorentz, equation,prov'ded that the charges and four currents are also trans-
which describes the dynamics of a dyon with radiation reacformed:
tion, is derived in Sec. Il while the conceptual difficulties o, . , .
associated with this classical model for a point charge are ju=lucos0+g,sind, g,=g,cos0-j,sind. (7)

briefly reylevyed in Sec. 1V, including electromagn_etlc mass By analogy, with the idea that the Lorentz invariance be-
renormalization, runaways, and acausal effects; finally, con-

clusions are drawn in Sec. V. where the imolications of eIeCcomes manifest in covariant notation, dual invariance can be
. ) - mp o clearly expressed in complex notation: since the dual trans-
tromagnetic duality for QED are also outlined. In addition, a

formation is essentially a rotation in the complex charge

few technical points and a physical interpretation of theplane this suggests the notatigr:q+ig, which yields the
Schott term in terms of nonlocal four-momentum conserva- ' — .

tion, are presented in the Appendices, as well as a brief di€Cmplex four-current density ,=j,+ig,; similarly, the
cussion of the Hamiltonian formalism for classical radiationcomplex four potential is defined a,=A,+iV,, from

reaction. which the complex electromagnetic field tensor is derived as

Il. SYMMETRIZED ELECTRODYNAMICS Fuv=FutiF,=0,A,—d,A,+ie,,.p0°A%  (8)

Here, and throughout the remainder of this paper, we us®Vithin this context, the dual transform reduces to
electron units, where length is measured in units of the clas- L o
sical electron radius,=e*/4mweymyc?, while time is mea- F,=F.e'’ j,=j.e" 9)
sured in units ofry/c, mass is measured in units ofy,
electric charge is measured in units ef and magnetic This notation also proves extremely compact: the symme-
charge in units ofi/e. In these unitsgo=1/4m, uo=4, trized form of Maxwell's equations takes the form
and for a particle of mags,, the four momentum is equal to _ _ _
the four velocity: p,=u,=dx,/d7, wherex,(7) is the d,Fr'=—3a,0"A*=4mj", (10
world line of the particle, and is its proper time. o ) ) )
We now focus on the problem of a dyon, having bothand it is now obvious that Eq$8) and(10) are dual invari-
electric and magnetic chargesand g, respectively[6]. If ant. ) )
magnetic sources are allowed, Maxwell's equations become Within this context, the dual-invariant Lorentz force equa-
symmetrized as follows: tion takes the form

(QVF#V=47TJ#1 (?yﬁMV=47TgM1 (1) FM:(qF/-LV—Fg’ﬁMV)UV: RdaE::VUV) (11)

where j* and g* correspond to the electric and magnetic Note that whenever a product between any two complex
four-current densities, and whefé” is the dual electromag- electromagnetic quantities defined previously is taken, one of
netic tensor. Here, the four-gradient operdtbt,12 is de- the_quantmes must be complex C(_)njugate(_j SO that its mag-
fined asd,=(—a ’V) ' netic component changes sign. This operation is analogous to
Now iﬁtroducitﬁg t'he electric four-potentidl“=(,A) raising and lowering an index in covariant notation, when

and its magnetic counterpai“=(g,V), the field tensor contrgcting tensors, so that the sign pf the timelike compo-
and its dual may be written aé foIIO\;VS' ’ nent is reversed: in both cases, the sign reversal ensures the

invariance of the product under the respective transform. The
FAV= gUAY— gV AR — ghvaBy \ 2) duality and Lorentz transforms are both rotations, in two and
«'p four-dimensional spaces, respectively.
and

~ . SYMMETRIZED DIRAC-LORENTZ EQUATION

F’”=s“”‘*ﬁaaAB+ oMY — g"VH, (3 . o .
To derive the radiation force, two different approaches

wheree#"*# is the completely antisymmetrical Levi-Civita €an be used. First, one can follow Dirac’s treatmii4]

tensor{13]. Applying the Lorentz gauge condition to the four and derive the radiation reaction from general principles in-
potentials, we have,A*=0, andd,V*=0; and the sym- cluding gauge invariance and Lorentz covariance; this is the

metrized version of Maxwell’s equations become focus of the present section. The second type of derivation
relies on a careful study of the conservation of the four mo-
3,0"A,=—4mj,, (4) ~ mentum of the electromagnetic field5—-18 during the in-
teraction.

and In the case of a classical point dyp@l, which possesses
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both an electric chargg, and a magnetic chargg the com- Physically, the disappearance of the cross terms involving
plex four current is given by the action of the magnetic self-potential on the electric
charge, and that of the electric self-potential on the magnetic
+oo . .
- = , N charge, is due to the fact that the corresponding ponderomo-
JulX) qf_m Uu(X,) 84(x, = X,)d7", (12 tive self-forces exactly cancel out. This decoupling of the

radiation reaction forces is to be expected because the polar-
where the integral over proper time allows the use of thdzation of the radiation generated by the dyon’s electric
invariant four-dimensional Dirac delta function, as discussedaharge is always orthogonal to that radiated by the magnetic
in Appendix A. charge; thus, there is no interference between the electric and
Now assuming, as Dirac did, that a particle acts on itselinagnetic components of the dyon self-electromagnetic field.
through the Lorentz forc¢9], but using the symmetrized Using the explicit form of the Green function in the force
expression thereof, the self-force is equation, we have

M ST AMAY _ AVAM i o uvaB g AS\* +
FETRAQUIAT CAHETIOADT L B9 ) - —amfd? | wTula,— 1600 -X)dr
where the complex self-potential satisfies the driven wave (22)
equation
. where we have used the notatiof)=u,(x;).
9. 9'AS=—4 —J U (xSl —x"d7' . 14 _ We now a_pply Dirac’s procedure fqrfmdmg the self-force
vk ™). w(X) 8a(X, =X, )d7 (14 in the point limit. The Green function in E¢21) depends on
_ _ the space-time intervaﬂ2=(x—x’)#(x—x’)“; using s®> as
Equation(13) can be written as the independent variable, the four-gradient operator reads
- — o — aMEZ(xM—x;)&/asz, and the self-force is
FL=RE QAL — d"AL*)u,—ige* P9, A5 u,],
(15)

+oo G
Fi=—8w|ﬁ[2J A7 U LU (X, = X,) U (X, = X)) ] =

while the driven wave equatiofi4) can be solved in terms - S
of Green functions: (22

o too At this point, we introduce the new variabté=7—17', so

Ai(x)\)= —4wﬁf u,(x))G(x\,—xy)d7r’,  (16)  that the range of integration explicitly incluQes the glectron
- (singular point at7”=0). To evaluate the integral in Eq.

(22), we can now use Taylor-McLaurin expansions in pow-

where G is the Green function formally defined &3(x, ers of 7 we first have

=Xy )=~ 84(X, — %)/ 3,3". Using this Green function solu-

tion in Eq. (15), it becomes clear that the last term in the X, =X}, =X, (1) =X, (7= 7")

square brackets is pure imaginary%iqs’”“ﬁaaAz*uV 1 1 d

«iqaq* =i[q]%; thus, the self-force reduces to =7, 5 7%a,+ 5 7J’3—di” +o, (29
FL=REQ(I*AL* — 3"A)u,]. 17

where we have used the four-velocity and four-acceleration.

Lest this manipulation appears as slight of hand, we depafter the four velocity, we have
momentarily from our elegant shorthand to elucidate the rea- 1 da
son for the vanishing of the last term in E45): in terms of u,=u,(r—7")=u,—7a,+ > R (24)

real quantities, the self-force reads dr
Fg:q(&ﬂAg_avAg_gwaﬁ&aV;)uv Using expansion$23) and(24), and factoring, we have
+ g(s’”“ﬁ&aAer V= 9'VEU,, (18

LU= X) — UL (%, = x))]
where the electric and magnetic self-potentials are driven by

the dyon electric and magnetic four currents, with 7 72 da, 72 da,
. ol [+ =(u “v>(“n‘7aﬁ?F +7(“ dr | Us
\Vi M(X)\): _47[9 Jim UM(X)\)G(X)\_X)\)dT ’ (19) , 7_//2 daM , 7_//2 Vday
- uM—an;;l—TF (u uV)—? U | Un
which implies thatV3,=(g/q)A;,. This last relation allows
some cancellation in Eq18), yielding the simpler expres- +0(773). (25

sion
We now use the Lorentz invariant‘u,= — 1. Differentiat-
FE=q(d"AL—d"A) U, +g(d*Vi—9"VE—)u,, (200 ing this equation with respect to the proper timewe first
find thatu,(du*/d7)=0=u,a*; this result corresponds to
in agreement with Eq17). the fact that the derivative of a vector with fixed length is
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orthogonal to the original vector: the four-acceleration is al-integrate out; this fact is rarely appreciated in the literature.
ways perpendicular to the four velocity. Differentiating a The momentum-transfer equation, including the radiation re-
second time with respect tor, we also havea,a* action, now reads

=—u,(da*/d7) [11,14,17.

Grouping terms, we finally obtain the important result L[ (7"
29[ T e
u”[u;(xﬂ—x;)—u;(x,,—x,’,)]
— 2 a
ol 1 7103 , : =Re(GF*,u") + 2 [A12 2 —u,(a,a”)|.
=712[—§aﬂ+§ 5o ~uu(@a’)|[+o(). » 3 dr  #

26) (3
The relation between the space-time intergdl and the Equation (31) clearly exhibits the infinite electromagnetic
proper time differences can be expanded as welt? mass, in the form of the divergent integral multiplying the
:T,,z(uﬂuﬂ)_(%/3/2)(uﬂau+auuﬂ)+O(T,,4); using the four acceleration.

orthogonality of the four velocity and four acceleration, this

reduces tos’=—7"2+0(7"%), and we havedG/ds’® V. CONCEPTUAL DIFFICULTIES: ELECTROMAGNETIC

=[—-1/27"+0(7")]0Glo7". MASS RENORMALIZATION, RUNAWAYS,
With this, the expression for the self-force reads ACAUSAL EFFECTS
o 72 In this section, the main conceptual problems associated
FZ=477|E[2J dr"[ —(7"12)a,+ —- d—”— u,(a,a") with the classical Dirac-Lorentz electron model are reviewed
o T

and discussed. The Dirac-Rohrlich asymptotic condition

[9,16] is then introduced to determine the physical solutions
+o(7-"3)] 7 (27 of the Dirac-Lorentz equation.
J As shown in Eq(31), the mass term contains an infinite

. . contribution from the self-electromagnetic fields of the point
We can integrate EqQ(27) by parts, according to gyon. There are two different ways to circumvent this diffi-
Jd7"t(7")oGlo7"= — [d7"(9f/97")G(7"), and obtain culty. First, we can consider that the infinite potential energy
associated with a point-charge model must be balanced by an

s P A | da, ” infinite binding energy—W, such as that produced by the
Fu=—4nldl j d%[ 2%%3 7J dr dr " us(@a") Poincarestress tensaf16,19,2Q, so that the finite observed
rest masg of the dyon is given in units ofi, by m
, " =(1/2 Jo(7) | 7'|d7"—W. This procedure is essen-
+o(7 2)]G(T ). (28) tia(lly e)(lﬂvale(nt 20| mLss renormalizat?on in QED. The diver-
gent electromagnetic mass, which is produced by the singu-
We now use the retarde@ausal Green function(9,14]; lar part of the Green function, can also be removed
Eq. (28) reads by considering the time-symmetrical Green functi@

=(1/2)(G"—G™), as first proposed by Dird®]; hereG~
2 represent the retarded and advanced Green functions. There
Fs=lal? f df’( “58,tgT is little doubt that the removal of the infinite self-energy of
the (nonradiativé Coulomb field is deeply connected to the
7 charge conjugation and time-reversal properties of electrody-
m) (29 namics, as exemplified by the Wheeler-Feynman electrody-
namics[21,22; however, the connection is not entirely clear.

, , D Using either approach to renormalize the electromagnetic
where we have usetlo—xg/|Xo—Xo|=7"/|7"], and &(s’)  ass we finally obtain the complete equation of motion for
=8(— 7'?)=8(7")/|7"|. This last identity has to be defined
mathematically with care, as discussed in Appendix B.

a particle with arbitrary electric and magnetic charge:
We now proceed with the integration of EQ9) to obtain

+oo (7"
f A7) 4o la
| 7|

daM ,
F u,(a,a”)

o(7")
| 7]

+O(7J’2)] 1+

98, D) (32
ar Yu(@a’) |, (32

— 2
ma, =Re(qF,u") + 3[q]*

Fo= 5l

o

wherem is the renormalized dyon mass. It is manifest that

Eq. (32), like the generalized form of Maxwell's equations,
(30 is invariant under a duality transform. In the case of an elec-

tron, q=—1, which yields the well-known Dirac-Lorentz
equation:

2 da
Zqr?| ——#
+3|al dr

—u,(a,a”)|,
which is the sought-after expression for the self-force. Note
that we have dropped the antisymmetrical terms in
7'l|7"|8(7") and (1#")8(7"), and that this expression is

. . . = — (=
exact because all the higher-order terms in the expansion A Full™* 70 4

(33

da,
ar —u,(a,a”)|,
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where 7o=2/3 is the Compton time scale, expressed in the Angular Momentum
units of ro/c used here. In mksa units,y= ue?/6Tmyc z
=0.626x 10 #s. The first term on the right-hand side is the ¥ Magnetic
Lorentz force, while the radiation reaction contain the Schott P <
term [9-12,14-20,2B and the radiation damping force
[11,17-19,2% Lo (94)
A very important property of the Dirac-Lorentz equation /Wb 'A .
is the fact that it satisfies energy-momentum conservation, a: ) 71 (1) e Electric

is easily seen by contracting E(@3) with the four velocity;
we then have

> da Charge Plane
—N— v " LY v
u#a,=0=U"F ,u"+ Z| U= (u u,(a,a)|,

3
(34)

which is satisfied by virtue of the antisymmetry of the elec-

tromagnetic field tensd¥ ,, and the orthogonality afi, and

a,.

MWe now briefly review some of the conceptual difficulties 1

associated with the Dirac-Lorentz equation itself. First, it is 1

easily seen that, in the absence of an external field(3g).

can be contracted witha* to obtain a*a,=(7/2)(d/

dr)(a*a,), which admits the so-called “runaway” solution

[a*a,](7)=[a"a,],=o exp(2r 7). FIG. 1. lllustration of the Dirac-Schwinger quantization condi-
Note that this self-excited motion implies that tion and the duality transform.

[a#a,],-o#0, and can be eliminated through the use of the

appropriate asymptotic conditions, lim...a,(7)=0, as  [7__ds' exp(~7'/7,), which “weights” the externally ap-

suggested by Dira¢9] and Rohrlich[16]. This type of plied electromagnetic field exponentially within a character-

boundary condition on the electron motion also satisfies thestic space-time interval equal to the classical electron radius.

law of inertia: the electron velocity remains constant whenThis type of solution does not run away because the preac-

no external force is applied. A detailed analysis of BB)  celeration of the electron over the Compton time scale

[16,20 also reveals the existence of acausal, or “preaccel«jaunches” it on a stable trajectory. In other words, the pre-

eration” solutions. This is directly connected to the |mp|IC|t acceleration exacﬂy compensates the runaway instab”ity’

electromagnetic mass renormalization underlying the Diracand when the external field is applied, the electron executes a

Lorentz equation: the self-force can be explicitly derived bymotion that conserves the total four momentum, including

using the time-symmetrical Green functida=(1/2)(G™  the pump and scattered fields, and asymptotically satisfies

—G™) [14], as first noted by Diraf9]. As a result, although the law of inertia.

the electron is modeled as a point charge, it can interact

electromagnetically with external fields localized within its V. DISCUSSION

classical radius: to show the implicit acausality of the Dirac-

Rohrlich solution, we recast the Dirac-Lorentz equation in At this point, the connection between duality and the fully

the form[16,20 symmetrized version of electrodynamics can be discussed

within the context of a dynamical gauge theory, where the

fine structure constant is now a running coupling constant.

We start from the Dirac-Schwinger charge quantization con-

dition [6] for electric and magnetic monopoles:

da, , ,
aM—T()W:K K,=—F,u"—mu,(a,a"). (35

M H

Multiplication by the integrating factoe™ 770 yields .
q1X0.=Im(a;q3)z=na !z, nel\. (39

g, lau(ne o] =— P 770K ,(7); (86 In Eq.(38) thezaxis corresponds to angular momentum; this
is schematically illustrated on Fig. (fop) where two differ-
Equation(36) can now be formally integrated to obtain ent charge state vectors are shown in the complex charge
plane for a positron, witly; =[XRe(q;)+yIm(q;)]=%, along
T\ (7 7 the electric axis, and a magnetic monopdlg;=[XRe{q,)
aﬂ(r)=ex;< T_o) f—x exp( - T_o) +9Im(qy)]=a 1§, along the magnetic axis. The/2 angle
between both charge states corresponds to the orthogonality
o of the electric and magnetic axes. The total angular momen-
(r)dr’. (37 tum of the system is now represented by the cross product of
g, andg,, and is quantized according to E&8). It is clear
The structure of this formal solution, which implicitly sat- that a duality transform simply rotates the electric and mag-
isfies the Dirac-Rohrlich asymptotic condition, clearly netic axes, as shown in Fig.(fop); however, the cross prod-
exhibits the acausal convolution integral operatoruct remains unchanged, as the relative angle between the

1
T_OUVFMV+ u,(a,a”)

X




PRE 62 RADIATIVE CORRECTIONS IN SYMMETRIZBED . . . 8645

monopole charge states and their length are preserved by this _ [+

rotation. Therefore, to fully symmetrize electrodynamics, JZ(XA)=QJ’ UL (X)) 84X\ —x)d7". (Ad)
one needs to taka=1, as first observed by Dird@,3], in o

which case the distinction between electric and magnetic

charges disappears. In this case, the radiation reaction are APPENDIX B

equal for an electric or a magnetic point charge interacting
with external fields, and the full symmetry of electrodynam-
ics is realized, as illustrated in Fig. (bottom). One of the s(7")

deepest questions associated with this theory is the exact 8(s?)=8(—7"?)= —. (B1)
connection with spin and the Dirac equation of QEZ). |7l

In conclusion, the basic el.ec.trodynamic equations fo_r arhe identity given by Eq(B1) has to be defined mathemati-
dyon have been presented within the context of a covarianty|ly with care. We need to show that, for a certain class of
formalism in the complex charge plane. A double-potentialsuitab|y defined functions. we have

formalism has been introduced, which facilitates symmetri-
zation of the calculations. An expression for the general self- ()

force of a dyon has been derived, and it has been found that f f(X)5(X2)dX=f f(x) de- (B2
this expression is proportional to Dirac’s expression for the

self-force on an electron, differing only by a factor involving Starting from the well-known identitj14,19,26,27

the electric and magnetic charge. Dirac’s procedure for tak-
ing the point limit of the self-force has been applied, and the

In Sec. lll, we have used the identity:

_ S(x—a)+ 8(x+a)

complete electrodynamic equation of motion for a dyon has s(x*—a%)= 2lal ' (B3)
been obtained. Finally, the connection with electromagnetic
duality has been outlined. and definingg(x) = f(x)/|x|, we first have
ACKNOWLEDGMENTS f f(x)&(xz—az)dx=f IX|g(x) 8(x2— a2)dx
This work was carried out under the auspices of the U.S.
Department of Energy through LLNL under Contract No. lal[g(a)+g(—a)]
W-7405-ENG-48, the Institute for Laser Science and Appli- - 2|al
cations. We would like to acknowledge useful discussions
with A. L. Troha and M. Zolotorev. F.V.H. would also like g(a)+g(—a)
to personally acknowledge very stimulating conversations - 2 : (B4)

with D. T. Santa Maria.
Applying this result to a functionf(x) such that

APPENDIX A: DYON FOUR-CURRENT lim _ [f(x)/|x]]=g(0) exists, we can now write

In Sec. Il, the dyon four current is modeled by the integral g(a)+g(—a)
over the dyon proper time of a four-dimensional delta func- lim f f(x)8(x2—a?)dx|= lim| —————
tion; here, we show how to go from a three-dimensional a—0 a—0 2
point charge model to an invariant delta function. In general,
the four-current density can be expressed in terms of four- =9(0)

velocity and charge density as

EJ f(x)8(x?)dx, (B5)

. u,u
X)) =|—1(X X)), Al
L) Y (*)p(x0) (A1) which is identical to
which can be formally expressed as an integral over all times 5(X)
if we use the properties of the Diratdistribution: J f(x)de=f g(x)8(x)dx=g(0).  (B6)
i 00— J+qu(X)’\)P(X>’\)5(t_t’)(1/_t" (A2)  In this sense, the identit{B1) is properly defined.

. . . APPENDIX C: SCHOTT TERM
Here, x; =x,(t")=[t',x(t")], and is measured in units of

ro. The charge density of the dyon is now modeled by a Here, we consider the exchange of four-momentum be-
three-dimensionab distribution, and we have tween the electron, the external field, and the scattered field.
An elementary treatment of this problem can be given in the
instantaneous rest frame of the particle, as discussed by Jack-
son[19], where one can balance to zero the time-averaged
work produced by the radiation force on the particle with the
where we have introduced the dyon proper time, defined byime-averaged radiated electromagnetic endd$), to ob-
dt'=+'ds’. The invariant four-dimensionab distribution  tain the Schott term of the Abraham-Lorentz fo@28-

can now be introduced, to yield 34]. The Schott term depends on the second time derivative

ji<xx):ajfjuﬂ<x;>aa<x—x'>6<t—t'>dr', (A3)
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of the particle velocity. However, it should be noted here
that, strictly speaking, in the instantaneous rest frare (
=0) where, by definition, both the particle velocity and ki-
netic energy are equal to zero, the infinitesimal variation of
the work of the damping forcejW=FpBdr, must also be
zero. In fact, it will be shown that in that frame, the dipole
radiation pattern of the scattered field is symmetrical, and
that there is no momentum exchanged between the charg
and the radiated wavgl7,18. The method of derivation
used here consists of evaluating the instantaneous variatio
of the energy momentum of the radiated field first
[11,17,18. This can be done either by integrating the Poyn-
ting vector flux and the radiation pressure of the scatterec
field on a sphere of finite radius, then taking the limit where
the radius tends to zero, assuming no internal particle struc
ture[18], or by generalizing results obtained in the instanta-
neous rest frame in a covariant wilyl1,20].

For a point charge moving along a world lirg(7) with == Yo
three-velocity 3=dx/dt and three-acceleratio=dp/dt, ‘ SN AR
thg radiative electric field at, is obtained by deriving the : :
Lienard-Wiechert four potential. In electron units, we have
for the radiative field11,12,15-17,19,24,35-39

nXx(n—p)x g

AR v

E(r,)=—

where the quantities in the bracket are evaluated at the re
tarded timet~ such thatt—t~=R(t")=|r—x(t7)|, and
wheren is the unit vector in the direction of observation.
The instantaneous electromagnetic momentum flux is
given in terms of the Maxwell stress tenspt1,12,15—
17,19,24,35-3p defined as
FIG. 2. Top: dipole radiation pattern, as observed in the instan-
1 5 o2 taneous rest frame of the accelerated electron. Bottom: the same
T - EiEj+BiBj— E(E +B) ;|- (C2 pattern, as observed in a frame where 1.01.

The total radiation pressure force applied to a sphere ofprce because for each photon radiated in a given direction of
radiusR, corresponding to the momentum recoil of the pho-gpace there is a photon with the same momentum radiated in
tons emitted by the particle &t is given by[[T;;njR°dQ,  the opposite direction. In any other frame, as shown in Fig. 2
wheren; is thejth component of. Following Ref.[18], the  (bottom), the relativistic Doppler effect breaks this symme-
instantaneous variation of the momentum of the scatteretty: the photons radiated in the forward direction are blue-
field can be expressed as shifted and carry more momentum than their backscattered
counterparts, resulting in a net radiation force opposite to the
direction of motion. In the instantaneous rest frame, the elec-
tron merely mediates the transfer of energy from the external
field to the radiated wave by scattering the incident photons.
whereeo denotes tensorial contraction. This physical picture isin agreement with the fact that in that

The details of the derivation are given in Appendix D; theframe the electron has no free energy to yield, and that the
covariant form of the instantaneous variation of the scattere#ork of any force acting on the electron must be zero; it also

dG_
Rl

f f (noT)deQ}, (C3

wave four momentum is found to be clearly indicates that in that frame, energy is directly ex-
changed between the external field and the scattered wave.

dGg, 2 , With this in mind, we now need to carefully investigate the
dr §(a,,a Uy (€4 conservation of the energy momentum of the three interact-

ing bodies. The covariant energy-momentum transfer equa-
The corresponding radiation damping force acting on thdion between the charge and the electromagnetic field now
charge is essentially a relativistic effect. Indeed, if we firsttakes  the form a,=dp,/dr=—-F, u"—dG,/dr
consider the instantaneous rest frame of the particle, we seedH,, /dr, where the first term is the usual Lorentz force
that this force vanishes, as indicated by E2d). This is due expressed in terms of the electromagnetic tensor, while the
to the symmetry of the dipole radiation pattern in this par-second term corresponds to the four-momentum radiated
ticular frame, as shown in Fig. @op): although electromag- away by the scattered wave as derived above, and where we
netic energy is radiated by the particle, there is no net recoihave introduced a third term corresponding to the instanta-
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Initial State

d . .
=Y B BT3B BY=B-F.  (CY
lo yo=1,Uzo=0 dt

4
y

> Equation(C6) corresponds exactly to the covariant expres-
sion of the Abraham-Lorentz force. The self-interaction na-
ture of the radiation force is evident, as the expression de-
Final State rived scales with the square of the particle chargg:
= uoe?/6rmyce. In the first term of Eq(C6), we recover the
y21,u;#0 I<lo Schott term that depends on the second time derivative of the
A S particle velocity, and which is identified here with the deple-
e- tion of energy momentum from the pumf@accelerating
Forward Scattered field, while we recover the quadratic scaling with accelera-
(Interference) tion for the second term corresponding to the radiation
damping force. As indicated by EGC6), the total radiation
force can be attributed to two distinct effects. On the one
neous variation of the energy momentum of the external fiel hand, energy momentum is radiated away by the scattered
i . . SN . Q/vave, as described by EdC4). The asymmetry of the
r_esultlng from the mter_actlon. Wlth_ln this context, the rsadla- Doppler-shifted dipole radiation pattern in any frame where
tion force IS defined as Fu_ the particle is not instantaneously at rest, gives rise to this
=—d/dr(G,+H,); here, we have also used the principle force, which dominates in the ultrarelativistic limit; it also
of action and reaction, which holds as long as we considehas a nonzero value for a particle submitted to a constant
the instantaneous interaction of a point particle: in that caseacceleration, as opposed to the Schott term. On the other
both the spacelike and timelike intervals are zero and there isand, the second term in EGC6) is attributed to the energy
no propagation delay to consider. momentum exchanged between the scattered wave and the
We now use the relations between the four-velocity andexternal field. This term allows for the local simultaneous
its successive derivativelsl1,14,17; using Eg.(C4), and  conservation of energy and momentum during the radiation
contracting the four-momentum transfer equation with theprocess. The physics of the interaction can be illustrated by

Backscattered
(No Interference)

FIG. 3. Scattering of a laser pulse by an electron initially at rest.

four velocity, we first have considering the process shown in Fig. 3. Here, we consider
the total energy and momentum of the electrodynamical sys-
ha (e o u 2 g PN H, tem initially comprising a high intensity, short-wavelength
ufa,=0=—u"F U+ z{ U, g (Ufu,) - U= incoming laser pulsépump and an electron at rest. In gen-

(C5) eral, after the interaction, the electron has gained some en-
ergy and momentun{in the minimal case, the electron
The first term on the right-hand side is equal to zero, sincgyould be left precisely at rest after the scatteyjnand is
the electromagnetic tensor is antisymmetrical; in the seconflow moving at relativistic velocity, while the scattered wave
term, we use ufu,=—1 to obtain 2/8,da’’/d7  carries energy and momentum in all spatial directions. In this
=—u*dH,/d7. As noted by Pauli11], the general solution case, it is clear that all the energy and momentum gained by
is dH, /d7=—(2/3)da,/dtu,+ xu’K,,, where we have hoth the electron and the scattered wave come at the expense

introduced the antisymmetrical tensor K,,  of the external field. It is equally clear that in such a process,
=2/3u,(da,/dr)—u,(da,/d7)], and wherex is an arbi-  the radiated electromagnetic power and the variation of the
trary constant. electron energy cannot be equal, therefore invalidating any

It is clear thatk=0 yields the Dirac-Lorentz equation; in theoretical model based on the local conservation of four
that case, we can identify the variation of the four momen-momentum between the electron and the radiated field only.
tum in the external field with the Schott termiH,/d7  We also note that while the backscattered radiation does not
=—2/3(da,/d7). With this, the manifestly covariant ex- interfere with the laser pulse, the forward scattered radiation,
pression for the radiation reaction becomes which has the same spectral characteristics as the pump, and

co-propagates in the positiedirection, does interfere de-
(C6) structively with the laser pulse and lowers its energy and
momentum, yielding pump-field depletion.
o ) » _ Finally, in the case of an external electric field derived
and it is easily seen that,=u"K . In addition, the anti-  from a static potentialp(r), the timelike component of the

symmetrical character of the tenser,, guarantees that pjrac-Lorentz equation, which describes energy conserva-
u#F,=0. For completeness, we give the corresponding eXtjon, takes the simple form

pression of the radiation reaction force in vector form, as 5
expressed in electron units where the force is normalized to d_)/_u — 2d%y dG, d
MoC2/T o dr ?T3d”2 dr dr

2
FM:§

da

B

dr

u.(a,a")

(C9)

and can formally be integrated to yield the conservation law
A(y—@+Go)=2/3dy/dr]"%, which indicates that,

It is easily verified that the variation of the electron energyprovided the Dirac-Rohrlich asymptotic  condition
due to the radiative effectéimelike component of the radia- lim,_ ..[dy/d7]=0 is satisfied, the electron potential en-
tion force satisfies the equation ergy is converted to kinetic energy and radiation.

F=10y{B+3v°B(B-B)+ 72B[B-B+372(B-B)Z]}(b7)
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Within this context, the small value of the fine-structure stress tensor as
constant, which corresponds to the ratio of the classical to
guantum electron scalglassical electron radius divided by
the electron Compton wavelengthguarantees that the d_G: — lim f f (noT)RZdQ} (D1)
acausal effects related to the electromagnetic mass renormal- dt . '
ization will be smeared by quantum fluctuations before the
strong classical radiative correction regime is reached, thus
preventing “naked acausalities.” If magnetic charges arewheree denotes tensorial contraction.
considered, however, the radiation reaction dominate over Introducing the vectog, defined such that
the quantum effects because the effective coupling constant
is nowa !, which is a large number.

- P (0D2)
APPENDIX D: MAXWELL STRESS TENSOR (1-n-B8)°R

The instantaneous variation of the momentum of the scat-
tered field can be expressed in terms of the electromagnetand using the fact tha@8=nxE, Eq. (D1) reduces to

__iff B 8 €~ &~ (N & &) (& — &)}
dt a=) ] ™ (1-8-n)°

} dQ. (D3)
t=t"

Following Sommerfeld15], we change variables, and ex- The integral over all solid angles is
press the variation of momentum as a function of the re-

tarded tlme After some straightforward vector calculations, dG 27r w {n><[(n B)><,B]}2
d_G =_ L f wdg (D4) where the explicit dependence of the numeratofand ¢ is
dt” 4n (1-8-n)° given by Eq.(D6). The integral corresponding to tlyecom-

ponent averages to zero ové@r and the integral correspond-
ing to thex component averages to zero overWe are left
with

which can be further reduced to

dc 1 nx[(n—B)x B]}?

_:_”n{ [(n=BXBI ) (o o 1
(1_,8'n) __'2_'2_ 61_ 2+ 2 s” ) (D8)

dti_ 4,”_[)) 37TB7( IB B Cos «) |.

by noting thatéx (éxXn)=(n-&)&é—&%n, andn-£=0. It is

interesting to notice that EqD5) can also be derived di- At this point it is important to note that, as the sphere radius

rectly by using the Poynting vect@=EXH in the simpler  tends to zero, the retarded time tends to the instantaneous

equation liny_o(//SR*dQ), as shown in Ref[18]. To interaction time; Eq(D8) is easily shown to reduce to

evaluate the integral in E4D5), we expand the numerator

using spherical coordinates daG 2
oo o= 5 BYTB VBB (09)

{nx[(n—pB)x BI}?
o y s The instantaneous variation of the energy of the scattered
= B[(sina sinf cos¢ +cosa cosd) (S~ 1) wave can be derived in the same way by integrating the
Poynting vector flux over all solid angles, and taking the
— 2 — .
(1= p cosd)"+2f5 cosa(1-f cosf) limit where R tends to zero, to recover the ard formula

X (sina sin f cos¢+ cosa cosh)]. (D6) aw

2
4 2 2
Here, we have chosen the axis of the Galilean franseich dt 3 Y [ﬂ Y ('g '8) 1 (D10
that we have
The velocity-dependent term in Eq®9) and(D10) can be

B=2p, expressed in terms of the four acceleration as
B=p(zcosa+Xsina), Y B2+ Y4B B)*1=a,a". (D11)
and The covariant generalization of Eq@®9) and (D10) then

becomes quite straightforward. Following BecKéi7], we
n=X(sin# cos¢)+ Y(sin¢ sin¢)+z cosb. combine Eqs(D9) and(D10) to obtain the sought-after co-
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variant form of the instantaneous variation of the energy mowhere the usual balance between the kinetic, potential, and
mentum of the scattered wave: radiated energy is realized, as long as lim[dvy/dr]
=lim,_,[dvy/d7], which the Dirac-Rohrlich asymptotic
dG, — dG, ﬂ: deﬂ condition obviously satisfies. Because of the implied nonlo-
dr  dt dr dt cality of the radiation, this balance is generally not realized
differentially.
Finally, it is worth noting that the runaway solutions of
) o . . _ the Dirac-Lorentz equation correspondtmphysical trajec-
Itis also quite instructive to consider the dynamics of ayyries that minimize the particle energy associated with the
point electron within the context of a Hamiltonian formal-_ Hamiltonian given in Eq(E1) by making it tend to negative
ism. It can be shown that, in the temporal gauge, the Hamiljfinity In this sense, there is an interesting analogy between

2
§(a,,a”)uM.

(D12)

APPENDIX E: HAMILTONIAN FORMALISM

tonian the Dirac-Rohrlich asymptotic conditiongaw of inertia),
1 which are assumed by Dirac to yield the only physical solu-
H=—~/(7T—A)7+M7+ FJ f f (E2+B?)d3x, tion to the Dirac-Lorentz equatiof®], and the assumption
T

made in QED that the negative-energy states are entirely
occupied by electrons in order to prevent transitions from
positive to negative energies. The general problem of the
classical limit of QED remains an outstanding difficulty in
classical electrodynamics at high-field strengths. For ex-
ample, using the path-integral formulation of QED, the pho-
ton coordinates can be functionally integrated pt@], but

(ED)

yields the covariant Dirac-Lorentz equation in an external

field F,, provided that the mass term in EGA32) satisfies
the condition
f the radiation reaction terms yield divergences on the electron
world line that are exactly analogous to those discussed in
which corresponds to the mass renormalization previouslypec. Il. However, the Dirac-Lorentz equation, coupled to the
introduced. In Eq(E1), = is the particle canonical momen- prescription that all runaway solutions must be excluded, of-
tum, andA(q) is the vector potential at the position of the fers a simple and economical classical electron model that
particle. Note that in Eq(E1), there is a negative sign in Yields a consistent electrodynamics that includes the usual
front of the term usually associated with the kinetic energy Maxwell-Lorentz theory and gives a reasonable description
This readily explains the existence of runaway solutions. It iof such phenomena as nonlinear Compton scattering, which
equally important to notice that the normalized electron mas§an now be studied experimentally at energies in the 50 GeV
in the Dirac-Lorentz equation has the usual value of one, anfange and laser intensities exceeding®@/cnv [41,42. Fi-

1
“=3

o(7)

——dr—1, (E2)
|7l

not the value ofu given in the HamiltoniafEq. (ED]. In
this sense, it is clear that th@lissipative Dirac-Lorentz

nally, we note that the Hamiltonian formalism can also be
generalized within the framework of symmetrized electrody-

equation cannot be derived from a conventional Hamiltoniarnamics: the symmetrized Hamiltonian including radiation re-

(as expected

action is simply given by

One should also recognize that, by neglecting the radia-
tion reaction terms in the Dirac-Lorentz equation, which then

reduces to the usual Lorentz force equation, one can recov
the standard Hamiltonian in an external potential,

H=\(7m—A)?+1+¢, (E3

which defines a positive particle kinetic energy, as exempli-

fied by the plus sign in front of the square root.

Furthermore, in the case where the external force is de-

rived from a potential, it is possible to integrate the timelike
component of the Dirac-Lorentz equation to obtain

dy

dr|

+ oo

2

Ay=Ap—W+ 3

(E4

er  H=—\(mr—eA—-gV)’+u’+ed+ge
LB vwxeas
+8_77 >V XE+A-
><B—<pV~E—¢V-B)d3x, (E5)
while the Lorentz force Hamiltonian is H

=\(m—eA—gV)’+m?+e¢p+ge. Of course, there is no
Hamiltonian for the Dirac-Lorentz equations following Eq.
(E5).
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